An Optimized Back Propagation Learning Algorithm with Adaptive Learning Rate
نویسندگان
چکیده
منابع مشابه
Hybrid Optimized Back propagation Learning Algorithm For Multi-layer Perceptron
Standard neural network based on general back propagation learning using delta method or gradient descent method has some great faults like poor optimization of error-weight objective function, low learning rate, instability .This paper introduces a hybrid supervised back propagation learning algorithm which uses trust-region method of unconstrained optimization of the error objective function ...
متن کاملAn Accelerated Error Back - Propagation Learning Algorithm
We propose a method for learning in multilayer perceptrons (MLPs). It includes new self-adapting features that make it suitable for dealing with a variety of problems without the need for parameter re-adjustments. The validity of our approach is benchmarked for two types of problems. The first benchmark is performed for the topologically complex parity problem with a number ofbinary inputs rang...
متن کاملImproving Error Back Propagation Algorithm by using Cross Entropy Error Function and Adaptive Learning Rate
Improving the efficiency and convergence rate of the Multilayer Backpropagation Neural Network Algorithms is an important area of research. The last researches have witnessed an increasing attention to entropy based criteria in adaptive systems. Several principles were proposed based on the maximization or minimization of cross entropy function. One way of entropy criteria in learning systems i...
متن کاملDevelopments to the Back - Propagation Learning Algorithm
The original back-propagation methods were plagued with variable parameters which affected both the convergence properties of the training and the generalisation abilities of the resulting network. These parameters presented many difficulties when attempting to use these networks to solve particular mapping problems. A combination of established numerical minimisation methods (Polak-Ribiere Con...
متن کاملAccelerating Learning Performance of Back Propagation Algorithm by Using Adaptive Gain Together with Adaptive Momentum and Adaptive Learning Rate on Classification Problems
The back propagation (BP) algorithm is a very popular learning approach in multilayer feedforward networks. However, the most serious problems associated with the BP are local minima problem and slow convergence speeds. Over the years, many improvements and modifications of the BP learning algorithm have been reported. In this research, we propose a new modified BP learning algorithm by introdu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Advanced Science, Engineering and Information Technology
سال: 2017
ISSN: 2460-6952,2088-5334
DOI: 10.18517/ijaseit.7.5.2972